如图,边长为2的正方形绕边所在直线旋转一定的角度(小于)到的位置.(1)若,求三棱锥的外接球的表面积;(2)若为线段上异于,的点,,设直线与平面所成角为,当时,求的取值范围.
(本小题满分14分)一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.求: (Ⅰ)恰好摸到2个“心”字球的概率; (Ⅱ)摸球次数的概率分布列和数学期望.
(本题满分14分) 在△ABC中, 角A, B, C所对的边分别为a, b, c, 且满足. (Ⅰ) 求的值; (Ⅱ) 若△ABC的面积是, 求的值.
(本小题满分12分) 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: 其中是仪器的月产量. (1)将利润表示为月产量的函数; (2)当月产量为何值时,公司所获得利润最大?最大利润是多少?
(本小题满分14分) 已知函数且, (1)求的值; (2)判定的奇偶性; (3)判断在上的单调性,并给予证明.
(本小题满分12分) (1)已知函数,且对任意的实数x都有成立,求实数a的值; (2)已知定义在(-1,1)上的函数是减函数,且,求a的取值范围。