(本小题满分12分)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.(Ⅰ)求证:AF⊥平面CBF;(Ⅱ)设FC的中点为M,求证:OM∥平面DAF;(Ⅲ)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为,求.
设数列{an}满足a1 = 3,an+1 = 2an+n·2n+1+3n,n≥1。(1)求数列{an}的通项公式;(2)求数列{an}的前n项之和Sn。
如图,PA垂直于矩形ABCD所在的平面,PD=PA,E、F分别是AB、PD的中点。 (1)求证:AF∥平面PCE; (2)求证:平面PCE⊥平面PCD。
已知⊿ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC-sin(B-C)的值;(2)若a=2,求⊿ABC周长的最大值。
水库的蓄水量随时间而变化,现用t表示时间(单位:月),以年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t的近似函数关系式为。(1)若该水库的蓄水量小于50的时期称为枯水期,以i-1<t≤i表示第i月份(i=1,2,…12),问一年内那几个月份是枯水期?(2)求一年内该水库的最大蓄水量(取e3=20计算)。