为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)(Ⅰ)求x,y ;(Ⅱ)若从高校B、C抽取的人中选2人作专题发言,求这二人都来自高校C的概率。
(本小題满分16分)已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.(1)若,求外接圆的方程;(2)若过点的直线与椭圆相交于两点、,设为上一点,且满足(为坐标原点),当时,求实数的取值范围.
(本小题满分16分)(理科做)已知四棱锥的底面为直角梯形,,底面,且,,是的中点。(1)证明:面面;(2)求与所成的角的余弦值;(3)求面与面所成二面角的余弦值.(文科做)已知函数.(1)若函数的图象关于点对称,直接写出的值;(2)求函数的单调递减区间;(3)若在区间上恒成立,求的最大值.
(本小题满分16分)已知圆,(Ⅰ)若直线过定点(1,0),且与圆相切,求的方程;(Ⅱ)若圆的半径为3,圆心在直线:上,且与圆外切,求圆的方程.
(本小题满分14分)抛物线的焦点与双曲线的右焦点重合.(Ⅰ)求抛物线的方程;(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.
(本小题满分14分)如图,四棱锥的底面为正方形,底面,分别是的中点.(1)求证:平面;(2)求证:平面平面.