(本小題满分16分)已知椭圆:的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.(1)若,求外接圆的方程;(2)若过点的直线与椭圆相交于两点、,设为上一点,且满足(为坐标原点),当时,求实数的取值范围.
如图,已知平面ABC,AB=AC=3,,, 点E,F分别是BC, 的中点. (I)求证:EF 平面 ; (II)求证:平面平面. (III)求直线 与平面所成角的大小.
设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛.(I)求应从这三个协会中分别抽取的运动员人数;(II)将抽取的6名运动员进行编号,编号分别为,从这6名运动员中随机抽取2名参加双打比赛.(i)用所给编号列出所有可能的结果;(ii)设A为事件“编号为的两名运动员至少有一人被抽到”,求事件A发生的概率.
已知函数(Ⅰ)求最小正周期;(Ⅱ)求在区间上的最大值和最小值.
已知椭圆()上的点P到左、右两焦点的距离之和为,离心率为.(1)求椭圆的方程;过右焦点的直线交椭圆于A、B两点.若y轴上一点满足,求直线斜率k的值;(2)是否存在这样的直线,使的最大值为(其中O为坐标原点)?若存在,求直线方程;若不存在,说明理由.
小王于年初用50万元购买一辆大货车,第一年因缴纳各种费用支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该年每年的运输收入均为25万元,小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第年年底出售,其销售价格为万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=运输累计收入+销售收入-总支出)