如图,在直三棱柱ABCA1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点. (1)求证:DE∥平面ABC; (2)求三棱锥EBCD的体积.
如图,直线,抛物线,已知点在抛物线上,且抛物线上的点到直线的距离的最小值为. (1)求直线及抛物线的方程; (2)过点的任一直线(不经过点)与抛物线交于、两点,直线与直线相交于点,记直线,,的斜率分别为,, .问:是否存在实数,使得?若存在,试求出的值;若不存在,请说明理由.
已知数列的前项和为,且满足. (1)求,的值; (2)求; (3)设,数列的前项和为,求证:.
某网络营销部门为了统计某市网友2013年11月11日在某淘宝店的网购情况,随机抽查了该市当天名网友的网购金额情况,得到如下数据统计表(如图): 若网购金额超过千元的顾客定义为“网购达人”,网购金额不超过千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为. (1)试确定,,,的值,并补全频率分布直方图(如图(2)). (2)该营销部门为了进一步了解这名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定人,若需从这人中随机选取人进行问卷调查.设为选取的人中“网购达人”的人数,求的分布列和数学期望.
已知函数的图像经过点. (1)求的值; (2)在中,、、所对的边分别为、、,若,且.求.
一次函数是上的增函数,,已知. (1)求; (2)若在单调递增,求实数的取值范围; (3)当时,有最大值,求实数的值.