如图,已知圆锥的底面半径为,点Q为半圆弧的中点,点为母线的中点.若直线与所成的角为,求此圆锥的表面积.
若三角形内切圆半径为,三边长分别为,则三角形的面积为,根据类比思想,若四面体内切球半径为,四个面的面积分别为,则这个四面体的体积为( )
A. |
B. |
C. |
D. |
)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:平面DAF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅲ)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为,求.
(本小题满分12分)如图,在三棱锥中,丄平面,丄,,.
(Ⅰ)证明:丄;
(Ⅱ)求二面角的正弦值;
(Ⅲ)求三棱锥外接球的体积.
三棱锥中,平面,为侧棱上一点,它的正视图和侧视图 (如下图所示),则与平面所成角的大小为__ _;三棱锥的体积为 __ _.
(本小题满分12分)如图,四棱锥的底面是边长为1的正方形,,,为的中点,为上一点,且.
(1)证明:平面;
(2)证明:平面;
(3)求三棱锥的体积.
如图,在直三棱柱ABCA1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点.
(1)求证:DE∥平面ABC;
(2)求三棱锥EBCD的体积.
如图,在三棱锥中,平面平面,为等边三角形,,且,O,M分别为,的中点.
(Ⅰ)求证:平面;
(Ⅱ)设是线段上一点,满足平面平面,试说明点的位置;
(Ⅲ)求三棱锥的体积.
如图,已知平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,,,,.
(1)求证:平面BCE;
(2)求证:平面BCE;
(3)求三棱锥的体积.
在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(1)求证:平面EFG∥平面PMA;
(2)求证:平面EFG⊥平面PDC;
(3)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.