(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,,
(1)证明:平面平面;
(2)若,,令AE与平面ABCD所成角为,且,求该四棱锥的体积.
(本小题满分12分)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF;
(Ⅲ)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为,求.
已知的三边长分别为,,,是边上的点,是平面外一点.给出下列四个命题:
①若平面,且是边中点,则有;
②若,平面,则面积的最小值为;
③若,平面,则三棱锥的外接球体积为;
④若,在平面上的射影是内切圆的圆心,则三棱锥的体积为;
其中正确命题的序号是 (把你认为正确命题的序号都填上).
(本小题满分12分)如图是图的三视图,三棱锥中,,分别是棱,的中点.
(1)求证:平面;
(2)求三棱锥的体积.
(本小题满分14分)如图,直三棱柱中,,分别是,的中点.
(1)证明:平面;
(2)设,,求三棱锥的体积.
【原创】(本小题满分12分)如图,在三棱锥中,底面ABC,,AP=AC, 点,分别在棱上,且BC//平面ADE.
(Ⅰ)求证:DE⊥平面;
(Ⅱ)若PC⊥AD,且三棱锥的体积为8,求多面体ABCED的体积.
已知直三棱柱中,,侧面的面积为,则直三棱柱外接球表面积的最小值为 .
如图,在直三棱柱ABCA1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点.
(1)求证:DE∥平面ABC;
(2)求三棱锥EBCD的体积.
如图,在三棱锥中,平面平面,为等边三角形,,且,O,M分别为,的中点.
(Ⅰ)求证:平面;
(Ⅱ)设是线段上一点,满足平面平面,试说明点的位置;
(Ⅲ)求三棱锥的体积.
如图,已知平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,,,,.
(1)求证:平面BCE;
(2)求证:平面BCE;
(3)求三棱锥的体积.
在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(1)求证:平面EFG∥平面PMA;
(2)求证:平面EFG⊥平面PDC;
(3)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.