已知直三棱柱中,,侧面的面积为,则直三棱柱外接球表面积的最小值为 .
如图:已知四棱柱的底面是菱形,该菱形的边长为1,,.
(1)设棱形的对角线的交点为,求证://平面;
(2)若四棱柱的体积,求与平面所成角的正弦值.
(本小题满分12分)如图,矩形中,对角线的交点为⊥平面为上的点,且.
(I)求证:⊥平面;
(II)求三棱锥的体积.
如图,在三棱锥P﹣ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.
(Ⅰ)求证:DE∥面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求三棱锥B﹣PEC的体积.
(本小题满分12分)如图,在三棱锥中,丄平面,丄,,.
(Ⅰ)证明:丄;
(Ⅱ)求二面角的正弦值;
(Ⅲ)求三棱锥外接球的体积.
如图,在直三棱柱ABCA1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点.
(1)求证:DE∥平面ABC;
(2)求三棱锥EBCD的体积.
如图,在三棱锥中,平面平面,为等边三角形,,且,O,M分别为,的中点.
(Ⅰ)求证:平面;
(Ⅱ)设是线段上一点,满足平面平面,试说明点的位置;
(Ⅲ)求三棱锥的体积.
如图,已知平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,,,,.
(1)求证:平面BCE;
(2)求证:平面BCE;
(3)求三棱锥的体积.