高中数学

(本题小满分12分)
如图,直三棱柱中,分别是的中点,
(1)证明:平面
(2)求异面直线所成角的大小;
(3)当时,求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知某几何体的三视图如图所示,则该几何体的体积等于(  )

A. B.160
C. D.60
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

若长方体中,分别与底面所成的角为,则长方体的外接球的体积为(   )

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过
点A,P,Q的平面截该正方体所得的截面记为S.给出下列命题:

①当时,S为四边形;
②当时,S为等腰梯形;
③当时,S与C1D1的交点R满足
④当时,S为六边形;
⑤当时,S的面积为其中正确的是(   )

A.①②③ B.①②③⑤ C.②③④⑤ D.①③④⑤
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在棱柱的侧棱上各有一个动点,且满足是棱上的动点,则的最大值是         

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知四棱锥,其中的中点.

(1)求证:
(2)求证:面
(3)求四棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,

(1)证明:平面平面
(2)若, 令AE与平面ABCD所成角为, 且, 求该四棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某三棱锥的三视图如图所示,该三棱锥的体积是        

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(     )(单位:m2).

正视图      侧视图     俯视图

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,底面ABCD是菱形,,侧面底面ABCD,并且,F为SD的中点.

(1)求三棱锥的体积;
(2)求直线BD与平面FAC所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直三棱柱ABC­A1B1C1中,AB=AC=5,BB1=BC=6,D,E分别是AA1和B1C的中点.

(1)求证:DE∥平面ABC;
(2)求三棱锥E­BCD的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,平面平面为等边三角形,,且,O,M分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)设是线段上一点,满足平面平面,试说明点的位置
(Ⅲ)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四边形都是菱形,平面和平面互相垂直,且

(Ⅰ)求证:
(Ⅱ)求四面体的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知平面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,.

(1)求证:平面BCE;
(2)求证:平面BCE;
(3)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.

(1)求证:平面EFG∥平面PMA;
(2)求证:平面EFG⊥平面PDC;
(3)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学表面展开图试题