(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,,(1)证明:平面平面;(2)若,, 令AE与平面ABCD所成角为, 且, 求该四棱锥的体积.
已知向量,函数,且当时,的最小值为2(Ⅰ)求的单调递增区间;(Ⅱ)先将函数的图象上的点纵坐标不变,横坐标缩小到原来的,再把所得的图象向右平移个单位,得到函数的图象,求方程在区间上所有根之和.
设函数 (Ⅰ)当时,解不等式 ; (Ⅱ)若的解集为,求证:
已知圆的参数方程是为参数).(Ⅰ)以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,写出圆的极坐标方程;(Ⅱ)若直线的极坐标方程为,设直线和圆的交点为,求的面积.
设函数.若曲线在点处的切线方程为.(Ⅰ)求、的值;(Ⅱ)设,若-2时,,求的取值范围.
已知椭圆 的焦点为,点在C上,且轴. (Ⅰ)求椭圆的方程; (Ⅱ) 若直线与椭圆交于不同的两点,原点在以为直径的圆外,求的取值范围.