)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.(Ⅰ)求证:平面DAF⊥平面CBF;(Ⅱ)设FC的中点为M,求证:OM∥平面DAF;(Ⅲ)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为,求.
(Ⅰ)在复数范围内解方程(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且-1<ω<2(1)求|z|的值及z的实部的取值范围;(2)设u=,求证:u为纯虚数;(3)求ω-u2的最小值,
设,是否存在整式,使得对n≥2的一切自然数都成立?并试用数学归纳法证明你的结论.
求证:
在二项式的展开式中,第6项与第7的系数相等,求展开式中二项式系数最大的项和系数最大的项.
设求证: