(本小题满分14分)当均为正数时,称为的“均倒数”.已知数列的各项均为正数,且其前项的“均倒数”为.(1)求数列的通项公式;(2)设,试比较与的大小;(3)设函数,是否存在最大的实数,使当时,对于一切正整数,都有恒成立?
已知集合,若,求实数的值。
对于区间上有意义的两个函数如果有任意,均有则称与在上是接近的,否则称与在上是非接近的.现有两个函数与给定区间, 讨论与在给定区间上是否是接近的.
已知函数⑴写出该函数的单调区间;⑵若函数恰有3个不同零点,求实数的取值范围;⑶若对所有的恒成立,求实数的取值范围.
求经过两圆与的交点,且圆心在直线上的圆的方程.
圆内有一点,为过点且倾斜角为的弦,(1)当=时,求的长;(2)当弦被点平分时,写出直线的方程.