(本小题满分14分)当均为正数时,称为的“均倒数”.已知数列的各项均为正数,且其前项的“均倒数”为.(1)求数列的通项公式;(2)设,试比较与的大小;(3)设函数,是否存在最大的实数,使当时,对于一切正整数,都有恒成立?
已知数列{an}为等差数列,a3=5,a7=13,数列{bn}的前n项和为Sn,且有Sn=2bn-1, (1)求{an},{bn}的通项公式. (2)若cn=anbn,{cn}的前n项和为Tn,求Tn.
在中,的对边分别为,已知 (Ⅰ)求的值; (Ⅱ)若,求的面积.
(本题10分)已知ABCD是矩形,AD=4,AB=2,E、F分别是线段AB、BC的中点,PA⊥平面ABCD. (1)求证:PF⊥FD; (2)设点G在PA上,且EG//平面PFD,试确定点G的位置.
(本题10分)已知直线l:x+2y-2=0,试求: (1)点P(-2,-1)关于直线l的对称点坐标; (2)直线l1:y=x-2关于直线l对称的直线l2的方程; (3)直线l关于点(1,1)对称的直线方程.
(本小题满分13分)设数列{an}是一个公差为的等差数列,已知它的前10项和为,且a1,a2,a4 成等比数列. (1)求数列{an}的通项公式; (2)若,求数列的前项和Tn.