(满分14分)已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3).
(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求实数a的取值范围.
已知指数函数满足:,定义域为的函数是奇函数.求:
(1)确定的解析式;
(2)求,的值;
(3)若对任意的,不等式恒成立,求实数的取值范围.
对于函数,若存在,使得成立,称为不动点,已知函数
(1) 当时,求函数不动点.
(2)若对任意的实数,函数恒有两个相异的不动点,求a的取值范围.
某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是元,月平均销售件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为.记改进工艺后,旅游部门销售该纪念品的月平均利润是(元).
(1)写出与的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
某企业在第
年初购买一台价值为
万元的设备
的价值在使用过程中逐年减少,从第
年到第
年,每年初
的价值比上年初减少
万元;从第
年开始,每年初
的价值为上年初的
.
(1)求第
年初
的价值
的表达式;
(2)设
,若
大于80万元,则
继续使用,否则须在第
年初对
更新,证明:须在第9年初对
更新.
如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点.一条垂直于轴的直线,分别与线段和直线交于点.
(1)若,求的值;
(2)若为线段的中点,求证:为此抛物线的切线;
(3)试问(2)的逆命题是否成立?说明理由.
已知函数
,其中常数
满足
.
⑴若
,判断函数
的单调性;
⑵若
,求
时
的取值范围.
已知
,
是实数,函数
,
和
是
的导函数,若
在区间I上恒成立,则称
和
在区间I上单调性一致
(1)设
,若函数
和
在区间
上单调性一致,求实数
的取值范围;
(2)设
且
,若函数
和
在以
,
为端点的开区间上单调性一致,求
的最大值。
请你设计一个包装盒,如图所示, 是边长为60 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得 四个点重合于图中的点 ,正好形成一个正四棱柱形状的包装盒, 在 上是被切去的等腰直角三角形斜边的两个端点,设 .
(1)若广告商要求包装盒侧面积
最大,试问
应取何值?
(2)若广告商要求包装盒容积
最大,试问
应取何值?并求出此时包装盒的高与底面边长的比值.