某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是元,月平均销售件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为.记改进工艺后,旅游部门销售该纪念品的月平均利润是(元).(1)写出与的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
平行四边形OADB的对角线交点为C,=,=,=a,=b,用a、b表示、、.
如图,半圆O的直径为2,A为直径延长线上的一点,OA=2,B为半圆上任意一点,以AB为一边作等边三角形ABC.问:点B在什么位置时,四边形OACB面积最大?
如图,A、B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°、B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即前往营救,其航行速度为30海里/小时,该救援船达到D点需要多长时间?
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇. (1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
某人在汽车站M的北偏西20°的方向上的A处(如图所示),观察到C处有一辆汽车沿公路向M站行驶,公路的走向是M站的北偏东40°.开始时,汽车到A处的距离为31km,汽车前进20km后,到A处的距离缩短了10km.问汽车还需行驶多远,才能到达汽车站M?