某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的A处,并正以30海里/时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/时的航行速度匀速行驶,经过t小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.
已知全集,,, (Ⅰ)求; (Ⅱ)若,求实数的取值范围.
设函数. (1)当时,记函数在[0,4]上的最大值为,求的最小值; (2)存在实数,使得当时,恒成立,求的最大值及此时的值.
已知抛物线:,过焦点F的直线与抛物线交于两点(在第一象限). (1)当时,求直线的方程; (2)过点作抛物线的切线与圆交于不同的两点,设到的距离为,求的取值范围.
在中,,斜边.以直线为轴旋转得到,且二面角是直二面角,动点在斜边上。 (1)求证:平面平面; (2)当时,求异面直线与所成角的正切值; (3)求与平面所成最大角的正切值.
设各项均为正数的数列的前项和为,满足且. (1) 求数列的通项公式; (2) 证明:对一切正整数,有.