如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点.一条垂直于轴的直线,分别与线段和直线交于点.(1)若,求的值;(2)若为线段的中点,求证:为此抛物线的切线;(3)试问(2)的逆命题是否成立?说明理由.
一个几何体的三视图如下图所示(单位:), (1)该几何体是由那些简单几何体组成的; (2)求该几何体的表面积和体积.
已知函数f(x)=m-|x-2|,m∈R,且f(x+2)≥0的解集为[-1,1]. (1)求m的值; (2)若a,b,c∈R+,且++=m,求证:a+2b+3c≥9.
已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为(为参数). (Ⅰ)写出直线的普通方程与曲线的直角坐标方程; (Ⅱ)设曲线经过伸缩变换得到曲线,设为曲线上任一点,求的最小值,并求相应点的坐标.
如图,在正△ABC中,点D,E分别在边AC, AB上,且AD=ACAE=AB,BD,CE相交于点F. (Ⅰ)求证:A,E,F, D四点共圆; (Ⅱ)若正△ABC的边长为2,求A,E,F,D所在圆的半径.
已知函数(k为常数,e=2.71828……是自然对数的底数),曲线在点处的切线与x轴平行。 (1)求k的值; (2)求的单调区间; (3)设,其中为的导函数,证明:对任意,。