已知二次函数的图象过点,其导函数为,数列
的前项和为,点在函数的图象上.
(Ⅰ)求函数的解析式;
(Ⅱ)求数列的通项公式;
(Ⅲ)设,求数列的前项和.
设函数,.
(Ⅰ)当时,在上恒成立,求实数的取值范围;
(Ⅱ)当时,若函数在上恰有两个不同零点,求实数 的取值范围;
(Ⅲ)是否存在实数,使函数和函数在公共定义域上具有相同的单调性?若存在,求出的值,若不存在,说明理由。
某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售。这批干果销售结束后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第天的总销量(千克)与的关系为;乙级干果从开始销售至销售的第天的总销量(千克)与的关系为,且乙级干果的前三天的销售量的情况见下表:
(1)求、的值;
(2)若甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?
(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?
(说明:毛利润=销售总金额-进货总金额。这批干果进货至卖完的过程中的损耗忽略不计)
(本小题满分12分)
某小区要建一个面积为500平方米的矩形绿地,四周有小路,绿地长边外路宽5米,短边外路宽9米,怎样设计绿地的长与宽,使绿地和小路所占的总面积最小,并求出最小值.
|
(本小题满分12分)已知函数满足,对任意恒成立,在数列中,对任意
(1) 求函数的解析式
(2) 求数列的通项公式
(3) 若对任意的实数,总存在自然数k,当时,恒成立,求k的最小值。
已知函数.
(1)若从集合中任取一个元素,从集合中任取一个元素,求方程有两个不相等实根的概率;
(2)若是从区间中任取的一个数,是从区间中任取的一个数,求方程没有实根的概率.
(本小题满分12分)已知某种稀有矿石的价值(单位:元)与其重量(单位:克)的平方成正比,且克该种矿石的价值为元。
⑴写出(单位:元)关于(单位:克)的函数关系式;
⑵若把一块该种矿石切割成重量比为的两块矿石,求价值损失的百分率;
⑶把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大。(注:价值损失的百分率;在切割过程中的重量损耗忽略不计)
某单位欲用木料制作如下图所示的框架,框架的下部是边长分别为(单位为:)的矩形,上部是等腰直角三角形,要求框架围成的总面积为,问:分别是多少(精确到)时用料最省?
已知函数.
(1)若从集合中任取一个元素,从集合中任取一个元素,求方程有两个不相等实根的概率;
(2)若是从区间中任取的一个数,是从区间中任取的一个数,求方程没有实根的概率.