(本小题满分12分)已知函数满足,对任意恒成立,在数列中,对任意(1) 求函数的解析式(2) 求数列的通项公式(3) 若对任意的实数,总存在自然数k,当时,恒成立,求k的最小值。
如图所示,已知圆O1与圆O2外切,它们的半径分别为4、2,圆C与圆O1、圆O2外切.(1)建立适当的坐标系,求圆C的圆心的轨迹方程;(2)在(1)的坐标系中,若圆C的半径为3,求圆C的方程.
抛物线的准线方程为,过抛物线上的两点A,B作正方形ABCD使得边CD直线方程为求正方形的边长
已知三角形的三个顶点坐标分别为:点A(0,1)、B(4,-1)、C(2,5)(1)若经过点A的直线l与点B和点C的距离相等,求直线l的方程;(2)若点是外接圆上的动点,求的取值范围.
中心在原点,焦点在坐标轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且,椭圆的长半轴比双曲线的半实轴长,离心率之比为2:3。求这两条曲线的方程
如图,已知椭圆:与双曲线的离心率互为倒数,且圆:的圆心是椭圆的左顶点,设圆与椭圆交于点与点.(1)求的最小值;(2)设点是椭圆上异于,的任意一点,且直线分别与轴交于点,为坐标原点,求的最小值.