如图所示,已知圆O1与圆O2外切,它们的半径分别为4、2,圆C与圆O1、圆O2外切.(1)建立适当的坐标系,求圆C的圆心的轨迹方程;(2)在(1)的坐标系中,若圆C的半径为3,求圆C的方程.
设方程。、当在什么范围内变化时,该方程表示一个圆;、当在的范围内变化时,求圆心的轨迹方程。
求过直线与的交点,且平行于直 线的直线方程。
(本小题满分14分)设奇函数对任意都有求和的值;数列满足:=+,数列是等差数列吗?请给予证明;设与为两个给定的不同的正整数,是满足(2)中条件的数列, 证明:.
(本小题满分14分)若函数, (1)当时,求函数的单调增区间; (2)函数是否存在极值.
(本小题满分14分) 已知是数列的前项和,且,时有 . (1)求证是等比数列; (2)求数列的通项公式.