已知函数.(1)解关于的不等式;(2)若对,恒成立,求的取值范围.
已知抛物线上一点M(1,1),动弦ME、MF分别交轴与A、B两点,且MA=MB。证明:直线EF的斜率为定值。
已知正三棱柱的侧棱长和底面边长均为2, N为侧棱上的点,若平面与平面所成二面角(锐角)的余弦值为,试确定点N的位置。
正的边长为4,CD是AB边上的高,E、F分别是AC和BC的中点,现将沿CD翻折成直二面角,(1)求证:;(2)若点P在线段BC上,且BC=3BP,求证.
已知函数,(1)求的单调区间;(2)若,求在区间上的最值;
(本小题满分12分)数列的前n项和为,且满足,数列中,,且点在直线上,(1)求数列、的通项公式;(2)设, 求; (3)设,求使得对所有的都成立的最小正整数.