已知正三棱柱的侧棱长和底面边长均为2, N为侧棱上的点,若平面与平面所成二面角(锐角)的余弦值为,试确定点N的位置。
在中,角、、的对边分别为,已知。 (1)、求的值; (2)、若的周长为5,求的长。
已知等比数列中,, (1)、求数列的通项公式; (2)、设等差数列中,,求数列的前项和。
已知夹角为,且,,求: (1);(2)与的夹角。
已知函数的图像在点处的切线方程为. (1)求实数、的值; (2)求函数在区间上的最大值; (3)曲线上存在两点、,使得△是以坐标原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围.
已知数列的前项和为,且对于任意的,恒有, 设. (1)求证:数列是等比数列; (2)求数列的通项公式和; (3)若,证明:.