某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
如图,直线经过⊙上的点,并且⊙交直线于,,连接. (I)求证:直线是⊙的切线; (II)若⊙的半径为,求的长.
设,. (1)当时,求曲线在处的切线方程; (2)如果存在,使得成立,求满足上述条件的最大整数; (3)如果对任意的,都有成立,求实数的取值范围.
已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。 (Ⅰ)求椭圆的标准方程; (Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q;
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除颜色外完全相同。每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱) (1)求在一次游戏中 ①摸出3个白球的概率;②获奖的概率。 (2)求在两次游戏中获奖次数X的分布列及数学期望E(x)。
如图,已知四棱锥P-ABCD,底面ABCD为蓌形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点。 (Ⅰ)求证:AE⊥PD; (Ⅱ)若直线PB与平面PAD所成角的正弦值为,求二面角E-AF-C的余弦值.