在某次综合素质测试中,共设有40个考室,每个考室30名考生.在考试结束后,为调查其测试前的培训辅导情况与测试成绩的相关性,抽取每个考室中座位号为05的考生,统计了他们的成绩,得到如图所示的频率分布直方图.(Ⅰ)在这个调查采样中,用到的是什么抽样方法?(Ⅱ)写出这40个考生成绩的众数、中位数(只写结果);(Ⅲ)若从成绩在的考生中任抽取2人,求成绩在的考生至少有一人的概率.
(本小题满分14分) 对于函数f(x),若存在x0∈R,使f(x0)=x0成立, 则称x0为f(x)的不动点. 已知函数f(x)=ax2+(b+1)x+b-1(a≠0) (1)当a=1,b=-2时,求f(x)的不动点; (2)若对于任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围
(本小题满分13分)某车间生产某机器的两种配件A和B,生产配件A成本费y与该车间的工人人数x成反比,而成生产配件B成本费y与该车间的工人人数x成正比,如果该车间的工人人数为10人时,这这两项费用y和y分别为2万元和8万元,那么要使这两项费用之和最小,该车间的工人人数x应为多少
(本小题满分12分)已知数列满足a1=1,an+1=2an+1(n∈N*) (1) 求证:数列{an+1}是等比数列; (2) 求{an}的通项公式.
(本小题满分12分)已知变量x,y满足, 1、求不等式组所表示图形的面积 2、求Z=2x+y的最大值和最小值.
(本小题满分12分)已知二次函数=,且不等式的解集为 (1)求的解析式 (2)若不等式对于恒成立,求实数m的取值范围