(本小题12分)某工厂用两种不同原料可生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90kg; 若采用乙种原料,每吨成本1500元,运费400元,可得产品100kg,如果每月原料的总成本不超过6000元,运费不超过2000元,那么如何分配甲乙两种原料使此工厂每月生产的产品最多?最多是多少千克?
设.(Ⅰ)求的单调区间;(Ⅱ)在锐角中,角的对边分别为,若,求面积的最大值.
设函数f(x)对任意x,y,都有,且时,f(x)<0,f(1)=-2.(1)求证:f(x)是奇函数;(2)试问在时,f(x)是否有最值?如果有求出最值;如果没有,说出理由.
已知函数,(1) 证明:函数f(x)是R上的增函数;(2) 求函数f(x)的值域(3) 令g(x)=,判定函数g(x)的奇偶性,并证明
一种水果自某日上市起的300天内,市场售价与上市时间的关系种植成本与时间的函数关系为若认定市场售价减去种植成本为纯收益并用h(t)表示.(1)写出函数h(t)的解析式;(2)问何时上市的这种水果纯收益最大?(注:市场售价和种植成本的单位:元/102㎏,时间单位:天)
计算:(1)(2)