已知抛物线上一点M(1,1),动弦ME、MF分别交轴与A、B两点,且MA=MB。证明:直线EF的斜率为定值。
如图,在平面直角坐标系中,点,直线,设圆的半径为,圆心在上。 (1)若圆心也在直线上,过点作圆的切线,求切线的方程; (2)若圆上存在点,使,求圆心的横坐标的取值范围.
如图,已知二面角的大小为,菱形在面内,两点在棱上,,是的中点,面,垂足为. (1)证明:平面; (2)求异面直线与所成角的余弦值.
如图,在三棱锥中,平面平面,为等边三角形,且,,分别为,的中点. (Ⅰ)求证:平面; (Ⅱ)求证:平面平面; (Ⅲ)求二面角的平面角的余弦值..
已知圆与两平行直线和相切,圆心在直线上. (1)求圆的方程; (2)过原点做一条直线,交圆于两点,求的值.
如图,长方体中,,点分别在上,,过点的平面与此长方体的面相交,交线围成一个正方形. (1)在图中画出这个正方形(不必说明画法与理由). (2)求平面把该长方体分成的两部分体积的比值.