已知函数的最大值为.
(Ⅰ)求常数的值;
(Ⅱ)求函数的单调递增区间;
(Ⅲ)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.
(本小题满分13分)已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)求在上的最大值与最小值.
(本小题满分13分)已知函数()的图象经过点.
(Ⅰ)求函数的解析式;
(Ⅱ)求函数的最小正周期和单调递减区间.
(本小题满分14分)已知函数的部分图像如图所示.、分别是图像上的一个最高点和最低点,为图像与轴的交点,且四边形为矩形.
(Ⅰ)求的解析式;
(Ⅱ)将的图像向右平移个单位长度后,得到函数的图像.已知,,求的值.
(本题满分14分) 己知函数(其中)的最大值为,直线是 图象的任意两条对称轴,且的最小值为.
(1)求函数的单调增区间;
(2)若,求的值;
(3)对,在区间上有且只有个零点,请直接写出满足条件的所有的值并把上述结论推广到一般情况.(不要求证明)
已知向量,,.
(1)求函数的单调递减区间及其图象的对称轴方程;
(2)当时,若,求的值.
设函数
(Ⅰ)当时,求的值域;
(Ⅱ)已知中,角的对边分别为,若,,求面积的最大值.
先将函数的图象上所有的点都向右平移个单位,再把所有的点的横坐标都伸长为原来的2倍,纵坐标不变,得到函数的图象.
(1)求函数的解析式和单调递减区间;
(2)若为锐角三角形的内角,且,求的值.