(本题满分14分) 己知函数(其中)的最大值为,直线是 图象的任意两条对称轴,且的最小值为.(1)求函数的单调增区间;(2)若,求的值;(3)对,在区间上有且只有个零点,请直接写出满足条件的所有的值并把上述结论推广到一般情况.(不要求证明)
(本小题满分10分)已知,且, (1)求的值; (2)若,,求的值.
(本小题满分12分)设函数. (1)若函数在处有极值,求函数的最大值; (2)①是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由; ②证明:不等式
(本小题满分12分)设函数(). (1)当时,讨论函数的单调性; (2)若对任意及任意,,恒有成立,求实数的取值范围.
(本小题满分12分) 已知函数. (Ⅰ)函数在处的切线方程为,求a、b的值; (Ⅱ)当时,若曲线上存在三条斜率为k的切线,求实数k的取值范围.
(本小题满分12分)已知函数. (1)若为函数的极值点,求实数的值; (2)若时,方程有实数根,求实数的取值范围.