已知命题p:方程2x2+ax-a2=0在[-1,1]上有解;命题q:只有一个实数x0满足不等式x02+2ax0+2a≤0,若命题“p∨q”是假命题,求实数a的取值范围.
命题p:∀x∈(1,+∞),函数f(x)=|log2x|的值域为[0,+∞);命题q:∃m≥0,使得y=sin mx的周期小于,试判断p∨q,p∧q,p的真假性.
设命题p:函数的定义域为R;命题q:不等式,对∈(-∞,-1)上恒成立,如果命题“p∨q”为真命题,命题“p∧q”为假命题,求实数的取值范围.
已知,设p:函数在(0,+∞)上单调递减,
q:曲线y=x2+(2a 3)x+1与x轴交于不同的两点.若“p且q”为假,“﹁q”为假,求a的取值范围.
已知命题,命题。
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,“ ”为真命题,“ ”为假命题,求实数x的取值范围。
已知命题,命题。
(1)若p是q的充分条件,求实数m的取值范围;
(2)若m=5,“ ”为真命题,“ ”为假命题,求实数x的取值范围。
设命题p:函数的定义域为R;
命题q:不等式,对∈(-∞,-1)上恒成立,
如果命题“”为真命题,命题“”为假命题,求实数的取值范围.