设命题命题,如果命题真且命题假,求的取值范围。
已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12.圆:的圆心为点.(1)求椭圆G的方程(2)求的面积(3)问是否存在圆包围椭圆G?请说明理由.
已知集合(1)当A=B时,求实数的值;(2)当时,求实数的取值范围。
已知顶点在原点, 焦点在x轴上的抛物线被直线y=2x+1截得的弦长为,求抛物线的方程.
如图正方体ABCD-中,E、F、G分别是、AB、BC的中点.(1)证明:⊥平面AEG;(2)求,
写出下列命题的否定:(1)所有自然数的平方是正数(2)任何实数x都是方程5x-12=0的根(3)对于任意实数x,存在实数y,使x+y>0(4)有些质数是奇数