(本小题满分12分)等差数列{an}满足:a1=1, a2+a6=14;正项等比数列{bn}满足:b1=2,b3 =8.(1)求数列{an},{bn}的通项公式an,bn;(2)求数列{an·bn}的前n项和Tn.
求函数的导数:
求证:任何一个实系数一元三次方程a0x3+a1x2+a2x+a3=0(a0,a1,a2,a3∈R,a0≠0)至少有一个实数根.
已知f(x)= (1)求f(-x); (2)求常数a的值,使f(x)在区间(-∞,+∞)内处处连续.
已知函数f(x)= (1)f(x)在x=0处是否连续?说明理由; (2)讨论f(x)在闭区间[-1,0]和[0,1]上的连续性.
已知函数f(x)= (1)讨论f(x)在点x=-1,0,1处的连续性; (2)求f(x)的连续区间。