水以20米/分的速度流入一圆锥形容器,设容器深30米,上底直径12米,试求当水深10米时,水面上升的速度.
(本小题满分15分) 已知定义在上的函数,最大值与最小值的差为4,相邻两个最低点之间距离为,且函数图象所有的对称中心都在图象的对称轴上. (I)求的表达式; (II)若,求的值; (III)设,,,若恒成立,求实数的取值范围.
(本小题满分14分) 已知向量且,函数 (I)求函数的最小正周期及单调递增区间; (II)若,分别求及的值
(本小题满分14分)已知向量,. (I) 若,共线,求的值; (II)当时,求与夹角的余弦值.
如图,平面直角坐标系中,射线()和()上分别依次有点、,……,,……,和点,,……,……,其中,,.且, ……). (1)用表示及点的坐标; (2)用表示及点的坐标; (3)写出四边形的面积关于的表达式,并求的最大值.
已知:函数,在区间上有最大值4,最小值1,设函数. (1)求、的值及函数的解析式; (2)若不等式在时恒成立,求实数的取值范围; (3)如果关于的方程有三个相异的实数根,求实数的取值范围.