设命题p:函数的定义域为R;命题q:不等式,对∈(-∞,-1)上恒成立,如果命题“”为真命题,命题“”为假命题,求实数的取值范围.
已知椭圆的中心在原点,一个焦点,且长轴长与短轴长的比是.若椭圆在第一象限的一点的横坐标为1,过点作倾斜角互补的两条不同的直线,分别交椭圆于另外两点,. (Ⅰ)求椭圆的方程; (Ⅱ)求证:直线的斜率为定值; (Ⅲ)求面积的最大值.
已知函数. (1)当时,求函数的最小值; (2)若在上单调递增,求实数的取值范围.
如图,在矩形中,,沿对角线把折起到位置,且在面内的射影恰好落在上 (1)求证: ; (2)求与平面所成的角的正弦值.
已知关于的方程. (1)若方程表示圆,求实数的取值范围 ; (2)若圆与直线相交于两点,且,求的值
已知x=1是的一个极值点, (1)求的值; (2)求的单调递减区间 (3)设试问过点(2,5)可作多少条直线与曲线相切?请说明理由.