设等比数列{an}的前n项和为Sn,已知an + 1 = 2Sn + 2 (n∈N*).(1)求数列{an}的通项公式;(2)在an与an + 1之间插入n个数,使这n + 2个数组成一个公差为dn的等差数列.①在数列{dn}中是否存在三项dm,dk,dp (其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;②求证:.
已知定义在R上的奇函数 f(x)有最小正周期2,且当x∈(0,1)时, f(x)=.(1) 求 f(x)在[-1,1]上的解析式;(2) 证明: f(x)在(0,1)上是减函数.
已知sinα=,求tan(α+)+.
已知函数, (Ⅰ)若函数在上是减函数,求实数的取值范围;(Ⅱ)令,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;(III)当时,证明:
已知斜三棱柱的底面是直角三角形,,侧棱与底面所成角为,点在底面上射影D落在BC上.(Ⅰ)求证:平面;(Ⅱ)若点D恰为BC中点,且,求的大小;(III)若,且当时,求二面角的大小.
选修4-5:不等式选讲已知函数.(1)当时,求函数的定义域;(2)若关于的不等式的解集是,求的取值范围.