设等比数列{an}的前n项和为Sn,已知an + 1 = 2Sn + 2 (n∈N*).(1)求数列{an}的通项公式;(2)在an与an + 1之间插入n个数,使这n + 2个数组成一个公差为dn的等差数列.①在数列{dn}中是否存在三项dm,dk,dp (其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;②求证:.
(本小题满分12分) 设函数f (x)=,其中向量=(cosx+1,),=(cosx-1,2sinx),x∈R.(Ⅰ)求f (x)的解析式;(Ⅱ)求f (x)的最小正周期、对称轴方程和对称中心的坐标。
(本小题满分14分)设数列{an}和{bn}满足a1=b1=6,a2=b2=4,a3=b3=3,且数列{an+1-an}是等差数列,数列{bn―2}是等比数列(n∈N*). (Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)是否存在k∈N*,使?若存在,求出k,若不存在,说明理由.
(本小题满分14分)已知椭圆的右焦点为F,上顶点为A,P为C上任一点,MN是圆的一条直径,若与AF平行且在y轴上的截距为的直线恰好与圆相切. (Ⅰ)求椭圆的离心率; (Ⅱ)若的最大值为49,求椭圆C的方程.
(本小题满分14分)已知 (Ⅰ)求; (Ⅱ)若; (Ⅲ)若<,求证:当和时,都是单调增函数.
(本小题满分13分)如图,在三棱锥中,侧面与侧面均为边长为1 的等边三角形,,为中点. (Ⅰ)证明:平面; (Ⅱ)证明:; (Ⅲ)求三棱锥的体积.