设等比数列{an}的前n项和为Sn,已知an + 1 = 2Sn + 2 (n∈N*).(1)求数列{an}的通项公式;(2)在an与an + 1之间插入n个数,使这n + 2个数组成一个公差为dn的等差数列.①在数列{dn}中是否存在三项dm,dk,dp (其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;②求证:.
已知函数(e为自然对数的底数).(Ⅰ)当时,求函数的单调区间;(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.
已知函数(Ⅰ)求的单调区间;(Ⅱ)求在区间上的最值.
命题p:函数有零点;命题q:函数是增函数,若命题是真命题,求实数的取值范围.
设函数.(1)若,试求函数的单调区间;(2)过坐标原点作曲线的切线,证明:切点的横坐标为1;(3)令,若函数在区间(0,1]上是减函数,求的取值范围.
已知椭圆(a>b>0)的焦距为4,且与椭圆有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同两点A、B.(1)求椭圆C的标准方程;(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.