设命题p:函数的定义域为R;命题q:不等式,对∈(-∞,-1)上恒成立,如果命题“p∨q”为真命题,命题“p∧q”为假命题,求实数的取值范围.
已知圆C:(1)若不过原点的直线与圆C相切,且在轴、轴上的截距相等,求直线的方程;(2)从圆C外一点向圆引一条切线,切点为M,O为坐标原点,且有,求点P的轨迹方程.
已知偶函数,对任意,恒有,求:(1)的值;(2)的表达式;(3)对任意的,都有成立时,求的取值范围.
在某次测验中,有6位同学的平均成绩为75分,用表示编号为的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩,及这6位同学成绩的标准差;(2)从前5位同学中,随机地选2位同学,求恰有1位同学的成绩在区间(68,75)中的概率.
已知y=log4(2x+3-x2).(1)求定义域;(2)求f(x)的单调区间;(3)求y的最大值,并求取最大值时x的值.
某学校共有高一、高二、高三学生名,各年级男、女生人数如下图:已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.(Ⅰ)求的值;(Ⅱ)现用分层抽样的方法在全校抽取名学生,问应在高三年级抽取多少名?(Ⅲ)已知,求高三年级中女生比男生多的概率.