.如图,在五面体ABCDEF中,FA平面ABCD,AD//BC//FE,ABAD,AF=AB=BC=FE=AD.(Ⅰ)求异面直线BF与DE所成角的余弦值;(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.
选修4—1:几何证明选讲如图:在Rt∠ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过D作,垂足为E,连接AE交⊙O于点F,求证:。
已知函数 (为自然对数的底数). (1)求的最小值; (2)不等式的解集为,若且求实数的取值范围; (3)已知,且,是否存在等差数列和首项为公比大于0的等比数列,使得?若存在,请求出数列的通项公式.若不存在,请说明理由.
设椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
(1)求的标准方程;(2)设直线与椭圆交于不同两点且,请问是否存在这样的直线过抛物线的焦点?若存在,求出直线的方程;若不存在,说明理由.
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:甲:82 81 79 78 95 88 93 84乙:92 95 80 75 83 80 90 85(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数.并说明它在乙组数据中的含义;(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望.
如图的多面体是底面为平行四边形的直四棱柱,经平面所截后得到的图形.其中,,.(1)求证:平面; (2)求平面与平面所成锐二面角的余弦值.