阅读下列一段材料,然后解答问题:对于任意实数x,符号[x]表示“不超过x的最大整数”,在数轴上,当x是整数,[x]就是x,当x不是整数时,[x]是点x左侧的笫一个整数点,这个函数叫做“取整函数”也叫高斯(Gauss)函数.如[-2]=-2,[-1.5]=-2,[2.5]=2.则[1og2]+[log2]+[1og2]+[1og21]+[log22]+[log23]+[log24]的值为 ,
(本小题满分14分)设函数(),.
(Ⅰ)令,讨论的单调性;
(Ⅱ)关于的不等式的解集中的整数恰有3个,求实数的取值范围;
(Ⅲ)对于函数与定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数与的“分界线”.设,,试探究与是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
将函数在上的所有极值点按从小到大排成一列,给出以下不等式: ①; ②;③;④;其中,正确的判断是( )
A.①③ | B.①④ | C.②③ | D.②④ |
(本小题满分12分)
对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数.
(1)求闭函数符合条件②的区间[];
(2)判断函数是否为闭函数?并说明理由;
(3)若函数是闭函数,求实数的取值范围.
关于的函数,有下列结论:
①该函数的定义域是;②该函数是奇函数;
③该函数的最小值为; ④当 时为增函数,当时为减函数;
其中,所有正确结论的序号是
(本小题满分12分)
已知函数,
(1) 若存在实数,使得,求实数的取值范围;
(2) 设,且在区间上单调递增,求实数的取值范围。
(本小题满分14分)已知定义域为的单调函数是奇函数,当时,.
(I)求的值;
(II)求的解析式;
(III)若对任意的,不等式恒成立,求实数的取值范围.
(本小题满分12分)某炮兵阵地位于地面A处,两观察所分别位于地面点C和D处, 已知CD=6000m,∠ACD=45°,∠ADC=75°, 目标出现于地面点B处时,测得∠BCD=30°,∠BDC=15°(如图),求炮兵阵地到目标的距离.
已知函数是R上的单调增函数且为奇函数,数列是等差数列,>0,则的值 ( )
A.恒为正数 | B.恒为负数 |
C.恒为0 | D.可以为正数也可以为负数 |