(本小题满分12分)对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数.(1)求闭函数符合条件②的区间[];(2)判断函数是否为闭函数?并说明理由;(3)若函数是闭函数,求实数的取值范围.
(本小题8分)如图,正三棱柱的底面边长为,侧棱,是延长线上一点,且 (1)求证:直线平面; (2)求二面角的大小.
(本小题8分) 已知展开式中各项的系数和比各项的二项式系数和大 (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.
(文)(本小题8分) 如图,在四棱锥中,平面,,,, (1)求证:; (2)求点到平面的距离 证明:(1)平面, 又平面 (2)设点到平面的距离为,,, 求得即点到平面的距离为 (其它方法可参照上述评分标准给分)
(理)(本小题8分)如图,在四棱锥中,底面是矩形, 平面,,,以的中点为球心、为直径的球面交于点. (1) 求证:平面平面; (2)求点到平面的距离. 证明:(1)由题意,在以为直径的球面上,则平面,则 又,平面, ∴,平面, ∴平面平面. (2)∵是的中点,则点到平面的距离等于点到平面的距离的一半,由(1)知,平面于,则线段的长就是点到平面的距离 ∵在中, ∴为的中点, 则点到平面的距离为 (其它方法可参照上述评分标准给分)
(本小题8分)书架上有10本不同的书,其中语文书4本,数学书3本,英语书3本,现从中取出3本书.求: ( 1 )3本书中至少有1本是数学书的概率; ( 2 )3本书不全是同科目书的概率. 解:(1)3本书中至少有1本是数学书的概率为(4分) 或解 (4分) (2)事件“3本书不全是同科目书”的对立事件是事件“3本书是同科目书”, 而事件“3本书是同科目书”的概率为(7分 ∴3本书不全是同科目书的概率