已知函数的周期为.(1)当时,求的取值范围;(2)求函数的单调递减区间.
设全集,,,求,,,
已知,且方程有两个不同的正根,其中一根是另一根的倍,记等差数列、的前项和分别为,且()。 (1)若,求的最大值; (2)若,数列的公差为3,试问在数列与中是否存在相等的项,若存在,求出由这些相等项从小到大排列得到的数列的通项公式;若不存在,请说明理由. (3)若,数列的公差为3,且,. 试证明:.
已知椭圆C:的长轴长为,离心率. Ⅰ)求椭圆C的标准方程; Ⅱ)若过点B(2,0)的直线(斜率不等于零)与椭圆C交于不同的两点E,F(E在B,F之间),且OBE与OBF的面积之比为,求直线的方程.
已知函 数. (1)若曲线在点处的切线与直线垂直,求函数的单调区间; (2)若对于都有成立,试求的取值范围; (3)记.当时,函数在区间上有两个零点,求实数的取值范围.
如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点. (1)求证:BD⊥FG; (2)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由. (3)当二面角B—PC—D的大小为时,求PC与底面ABCD所成角的正切值.