(本小题满分14分)已知(Ⅰ)求;(Ⅱ)判断并证明的奇偶性与单调性;(Ⅲ)若对任意的,不等式恒成立,求的取值范围。
(本小题满分15分)在直三棱柱中,底面是边长为2的正三角形,是棱的中点,且.(1)试在棱上确定一点,使平面;(2)当点在棱中点时,求直线与平面所成角的大小的正弦值。
(本小题满分15分)已知数列的前项和满足:(为常数,且).(1)设,若数列为等比数列,求的值;(2)在满足条件(1)的情形下,设,数列的前项和为,若不等式对任意的恒成立,求实数的取值范围.
(本小题满分14分)在中,角所对的边分别为,角为锐角,且(1)求的值;(2)若,求的最大值。
(本小题满分14分)已知(1)求的值;(2)求的值。
本题共有3个小题,第(1)小题4分,第(2)小题6分,第(3)小题8分已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若R且,证明:函数必有局部对称点;(2)若函数在区间内有局部对称点,求实数的取值范围;(3)若函数在R上有局部对称点,求实数的取值范围.