已知为锐角,且
,函数
,数列
的首项
,
.
(1)求函数的表达式;(2)求数列
的前
项和
.
对于项数为的有穷数列数集
,记
,即
为
、
、
、
中的最大值,并称数列
是
的控制数列.如
、
、
、
、
的控制数列是
、
、
、
、
.
(1)若各项均为正整数的数列的控制数列为
、
、
、
、
,写出所有的
;
(2)设是
的控制数列,满足
(
为常数,
、
、
、
).求证:
.
已知数列满足
(1)若,数列
单调递增,求实数
的取值范围。
(2)若,试写出
对任意
成立的充要条件,并证明你的结论。
数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n=1,2,3,…),证明:
(1)数列是等比数列;
(2)Sn+1=4an.
设同时满足条件:①≤bn+1(n∈N*);②bn≤M(n∈N*,M是与n无关的常数)的无穷数列{bn}叫“特界” 数列.
(1) 若数列{an}为等差数列,Sn是其前n项和,a3=4,S3=18,求Sn;
(2) 判断(1)中的数列{Sn}是否为“特界” 数列,并说明理由.
设不等式组所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项和为Sn,且Tn=.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.
正项数列{an}的前项和满足:-(n2+n-1)Sn-(n2+n)=0.
(1)求数列{an}的通项公式an;
(2)令bn=,数列{bn}的前n项和为Tn.证明:对于任意的n∈N*,都有Tn<
.
已知数列{an}中,a1=2,n∈N*,an>0,数列{an}的前n项和为Sn,且满足an+1=.
(1)求{Sn}的通项公式;
(2)设{bk}是{Sn}中的按从小到大顺序组成的整数数列.
①求b3;
②存在N(N∈N*),当n≤N时,使得在{Sn}中,数列{bk}有且只有20项,求N的范围.
设数列{an}的前n项和为Sn.已知a1=1,=an+1-
n2-n-
,n∈N*.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有.
已知数列an=n-16,bn=(-1)n|n-15|,其中n∈N*.
(1)求满足an+1=|bn|的所有正整数n的集合;
(2)若n≠16,求数列的最大值和最小值;
(3)记数列{anbn}的前n项和为Sn,求所有满足S2m=S2n(m<n)的有序整数对(m,n).
已知an=
(1)求数列{an}的前10项和S10;
(2)求数列{an}的前2k项和S2k.
已知数列的通项公式an=
(n∈N*),求数列前30项中的最大项和最小项.
如下表定义函数f(x):
x |
1 |
2 |
3 |
4 |
5 |
f(x) |
5 |
4 |
3 |
1 |
2 |
对于数列{an},a1=4,an=f(an-1),n=2,3,4,…,求a2008.
已知数列{an}的前n项和Sn=kcn-k(其中c,k为常数),且a2=4,a6=8a3.
(1)求an;
(2)求数列{nan}的前n项和Tn.