设同时满足条件:①≤bn+1(n∈N*);②bn≤M(n∈N*,M是与n无关的常数)的无穷数列{bn}叫“特界” 数列.(1) 若数列{an}为等差数列,Sn是其前n项和,a3=4,S3=18,求Sn;(2) 判断(1)中的数列{Sn}是否为“特界” 数列,并说明理由.
【原创】设数列的前项和为,且满足.证明:数列是等差数列;若等差数列的公差,且成等比数列,求数列的前项和.
(本大题满分12分)某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取名学生的数学成绩,制成表所示的频率分布表.
(1)求、、的值; (2)若从第三、四、五组中用分层抽样方法抽取名学生,并在这名学生中随机抽取名学生与张老师面谈,求第三组中至少有名学生与张老师面谈的概率
(本小题满分12分)如图,在直三棱柱中,,、分别是,的中点.(1)求证:∥平面;(2)求证:平面平面;(3)若,,求三棱锥的体积.
(本大题满分12分)函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形(1)求的值及函数的值域;(2)若,且,求的值.
(本小题满分13分)已知函数,其中为常数,且.(1)若曲线在点处的切线与直线垂直,求的值;(2)若函数在区间上的最小值为,求的值.