(本大题满分12分)函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形(1)求的值及函数的值域;(2)若,且,求的值.
用总长14.8米的钢条制作一个长方体容器的框架,如果所制容器底面一边的长比另一边的长多0.5米,那么高为多少时容器的容积最大?最大容积是多少?
求由曲线y =" x2" 与 y =" 2-" x2 围成的平面图形的面积
已知函数f(x) =" x3" + ax2 + bx + c,当x = -1时,f(x)的极大值为7;当x = 3时,f(x)有极小值. 求: (1)a、b、c的值; (2)函数f(x)的极小值
(本小题满分16分) 给定两个长度为1的平面向量和,它们的夹角为. (1)求|+|; (2)如图(1)所示,点在以为圆心的圆弧⌒AB上运动.若 其中,求的最大值? (3)若点、点在以为圆心,1为半径的圆上,且,问与的夹角取何值时,的值最大?并求出这个最大值. 图(1)图(2)
(本小题满分15分) 设函数. (1)当 ≤≤时,用表示的最大值; (2)当时,求的值,并对此值求的最小值; (3)问取何值时,方程=在上有两解?