已知向量p=(an,2n),向量q=(2n+1,-an+1),n∈N*,向量p与q垂直,且a1=1.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an·bn}的前n项和Sn.
已知数列{an}的前n项和为Sn,且满足Sn=n2,数列{bn}满足bn=,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式an和Tn;
(2)若对任意的n∈N*,不等式λTn<n+(-1)n恒成立,求实数λ的取值范围.
已知等差数列{an}满足:a2=5,a4+a6=22,数列{bn}满足b1+2b2+…+2n-1bn=nan,设数列{bn}的前n项和为Sn.
(1)求数列{an},{bn}的通项公式;
(2)求满足13<Sn<14的n的集合.
已知数列{an}的前n项和是Sn,且Sn+an=1.
(1)求数列{an}的通项公式;
(2)记bn=log3,数列的前n项和为Tn,证明:Tn<.
已知数列的前n项和
(1)求数列的通项公式,并证明是等差数列;
(2)若,求数列的前项和
已知数列{an}满足:a1=,an+1= (n∈N*).
(1)求a2,a3的值;
(2)证明:不等式0<an<an+1对于任意n∈N*都成立.
设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=ln a3n+1,n=1,2,…,求数列{bn}的前n项和Tn.
设{an}是公比不为1的等比数列,其前n项和为Sn,且a5,a3,a4成等差数列.
(1)求数列{an}的公比;
(2)证明:对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
已知数列{an}的前n项和为Sn,且满足Sn=n2,数列{bn}满足bn=,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式an和Tn;
(2)若对任意的n∈N*,不等式λTn<n+(-1)n恒成立,求实数λ的取值范围.
正项数列{an}的前n项和Sn满足:-(n2+n-1)Sn-(n2+n)=0.
(1)求数列{an}的通项公式an;
(2)令bn=,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<.
(本小题12分)已知函数.
(1)证明函数的图像关于点对称;
(2)若,求;
(3)在(2)的条件下,若 ,为数列的前项和,若对一切都成立,试求实数的取值范围.
已知函数f(x)=x2-ax+b(a,b∈R)的图像经过坐标原点,且,数列{}的前n项和=f(n)(n∈N*).
(Ⅰ)求数列{}的通项公式;
(Ⅱ)若数列{}满足+ = ,求数列{}的前n项和.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列的一个子数列.
设数列是一个首项为、公差为的无穷等差数列.
(1)若,,成等比数列,求其公比.
(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由.
(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项.求证:当为大于1的正整数时,该数列为的无穷等比子数列.
(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)
设数列是等差数列,且公差为,若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)若,求证:该数列是“封闭数列”;
(2)试判断数列是否是“封闭数列”,为什么?
(3)设是数列的前项和,若公差,试问:是否存在这样的“封闭数列”,使;若存在,求的通项公式,若不存在,说明理由.