2014届高考数学(文)三轮专题体系通关训练倒数第2天练习卷
如图,在直三棱柱ABCA1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,A1A=,M是CC1的中点.
(1)求证:A1B⊥AM;
(2)求二面角BAMC的平面角的大小..
来源:2014届高考数学(文)三轮专题体系通关训练倒数第2天练习卷
如图,在长方体ABCDA1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分别是棱AB,BC上的点,且EB=FB=1.
(1)求异面直线EC1与FD1所成角的余弦值;
(2)试在面A1B1C1D1上确定一点G,使DG⊥平面D1EF.
来源:2014届高考数学(文)三轮专题体系通关训练倒数第2天练习卷
某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为,.
(1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?
(2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率分布列和数学期望.
来源:2014届高考数学(文)三轮专题体系通关训练倒数第2天练习卷
设m,n∈N*,f(x)=(1+2x)m+(1+x)n.
(1)当m=n=2 011时,记f(x)=a0+a1x+a2x2+…+a2 011x2 011,求a0-a1+a2-…-a2 011;
(2)若f(x)展开式中x的系数是20,则当m,n变化时,试求x2系数的最小值.
来源:2014届高考数学(文)三轮专题体系通关训练倒数第2天练习卷