(本小题满分13分)
已知动点P到直线的距离比它到点F的距离大.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)若点P的轨迹上不存在两点关于直线l:对称,求实数的取值范围.
设 是等腰三角形, ,则以 为焦点且过点 的双曲线的离心率为()
A. | B. | C. | D. |
建立适当的坐标系,用坐标法解决下列问题:
已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
如图,已知
的两条角平分线
和
相交于
,
,
在
上,且
.
(Ⅰ)证明:
、
、
、
四点共圆;
(Ⅱ)证明:
平分
.
如图,在四边形ABCD中,AD=8,CD=6,AB=13,∠ADC=90°,且.
(1)求sin∠BAD的值;
(2)设△ABD的面积为S△ABD,△BCD的面积为S△BCD,求的值.
如图,一条螺旋线是用以下方法画成:ΔABC是边长为1的正三角形,曲线CA1,A1A2,A2A3分别以A、B、C为圆心,AC、BA1、CA2为半径画的弧,曲线CA1A2A3称为螺旋线旋转一圈.然后又以A为圆心AA3为半径画弧,这样画到第n圈,则所得螺旋线的长度_____________.(用π表示即可)
已知点C在圆O的直径BE的延长线上,CA与圆O相切于点A,∠ACB的平分线分别交AB,AE于点D,F,则∠ADF=
如图,F是定直线l外的一个定点,C是l上的动点,有下列结论:若以C为圆心,CF为半径的圆与l交于A、B两点,过A、B分别作l的垂线与圆
C过F的切线交于点P和点Q,则P、Q必在以F为焦点,l为准线的同一条抛物线上.
(Ⅰ)建立适当的坐标系,求出该抛物线的方程;
(Ⅱ)对以上结论的反向思考可以得到另一个命题:
“若过抛物线焦点F的直线与抛物线交于P、Q两点,
则以PQ为直径的圆一定与抛物线的准线l相切”请
问:此命题是否正确?试证明你的判断;
(Ⅲ)请选择椭圆或双曲线之一类比(Ⅱ)写出相应的命题并
证明其真假.(只选择一种曲线解答即可,若两种都选,则以第一选择为评分依据)
已知平面内两定点,动点满足条件:,设点的轨迹是曲线为坐标原点。
(I)求曲线的方程;
(II)若直线与曲线相交于两不同点,求的取值范围;
(III)(文科做)设两点分别在直线上,若,记 分别为两点的横坐标,求的最小值。
(理科做)设两点分别在直线上,若,求面积的最大值。