设抛物线的准线与轴交于点,焦点为;椭圆以 为焦点,离心率。(I)当时,①求椭圆的标准方程;②若直线与抛物线交于两点,且线段 恰好被点平分,设直线与椭圆交于两点,求线段的长;(II)(仅理科做)设抛物线与椭圆的一个交点为,是否存在实数,使得的边长是连续的自然数?若存在,求出这样的实数的值;若不存在,请说明理由。
(本小题满分12分)如图,已知三棱柱的侧棱与底面垂直,, 且,是的中点,是的中点,点在上, 且满足。
20090406
(1)证明:;
(本小题满分12分)某市十所重点中学进行高三联考,为了了解数学学科的考试情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表: (1)根据上面频率分布表,求①,②,③,④处的数值;(2)在所给的坐标系中画出区间上的频率分布直方图;(3)从样本在的个体中任意抽取个个体,求至少有一个个体落在的概率。
(本小题满分12分)在中,已知(1)求的值;(2)求的取值范围。
(本小题满分12分)设F是椭圆C:的左焦点,直线l为其左准线,直线l与x轴交于点P,线段MN为椭圆的长轴,已知.(1)求椭圆C的标准方程;(2)若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM =∠BFN.
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是矩形,已知AB = 3,AD = 2,PA = 2,,.(1)证明:AD⊥平面PAB;(2)求异面直线PC与AD所成的角的大小;(3)求二面角P—BD—A的大小.