(本小题满分12分)已知数列中,. (1)求证:是等比数列,并求的通项公式;(2)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.
在4月份(按30天计算),有一新款服装投入某商场销售,4月1日该款服装仅销售出10件,第二天售出35件,第三天销售60件,然后,每天售出的件数分别递增25件,直到4月12日销售量达到最大,以后每天销售的件数分别递减15件. (Ⅰ)问到月底该服装共销售出几件. (Ⅱ)按规律,当该商场销售此服装的日销售量达到150件以上时,社会上就流行,问该款服装在社会上流行是否超过14天?并说明理由.
在平面直角坐标系中,抛物线C的顶点在原点,经过点 A(2,2),其焦点F在轴上. (Ⅰ)求抛物线C的标准方程; (Ⅱ)求过点F,且与直线OA垂直的直线的方程.
在中, (Ⅰ)求AB的值. (Ⅱ)求的值.
设命题:函数=-2-1在区间(-∞,3]上单调递减;命题:函数的定义域是.如果命题为真命题,为假命题,求的取值范围.
(本小题14分) 已知,函数,(Ⅰ)当=2时,写出函数的单调递增区间;(Ⅱ)当>2时,求函数在区间上的最小值;(Ⅲ)设,函数在上既有最大值又有最小值,请分别求出的取值范围(用表示)