设过点的直线分别与正半轴, 轴正半轴交于两点,为坐标原点,则三角形面积最小时直线方程为
已知分别是双曲线的左、右焦点,过斜率为的直线交双曲线的左、右两支分别于两点,过且与垂直的直线交双曲线的左、右两支分别于两点。
(1)求的取值范围;
求四边形面积的最小值。
以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为 圆心、为半径。
(I) 写出直线的参数方程和圆的极坐标方程;
(Ⅱ)试判定直线和圆的位置关系。
过抛物线y2=4x的焦点作直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则|AB|等于( )
A.10 | B.8 | C.6 | D.4 |