[四川]2011-2012学年四川省泸州高级教育培训学校高三12月月考理科数学
在复平面内,复数对应的点位于( )
A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
已知不等式的解集为,是减函数,则是的( )
A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
从圆外一点向这个圆作两条切线,则两切线夹角的余弦值为( )
A. | B. | C. | D. |
已知双曲线的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )
A.( 1,2) | B.(1,2) | C.[2,+∞] | D.(2,+∞) |
要得到函数的图象,只需将函数的图象作下列移动得到( )
A.按向量平移 | B.按向量平移 |
C.按向量平移 | D.按向量平移 |
在三角形中,向量和满足且则△ABC为( )
A.等边三角形 | B.等腰非直角三角形 | C.非等腰三角形 | D.等腰直角三角形 |
3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )
A.360 | B.288 | C.216 | D.228 |
已知R上的连续函数满足:①当时,恒成立(为函数的导函数);②对任意都有。又函数满足:对任意的都有成立,当时,。若关于x的不等式对恒成立,则a的取值范围是( )
A.或 | B. |
C.? | D. |
已知的展开式中所有项的二项式系数和为64,则展开式的常数项是_________.
设过点的直线分别与正半轴, 轴正半轴交于两点,为坐标原点,则三角形面积最小时直线方程为
若定义在R上的函数满足,,则称为R上的线性变换,现有下列命题:
①是R上的线性变换
②若是R上的线性变换,则
③若与均为R上的线性变换,则是R上的线性变换
④是R上的线性变换的充要条件为是R上的一次函数
其中是真命题有 (写出所有真命题的编号)
在中,已知内角所对的边分别为,向量 ,且//, 为锐角.
(1)求角的大小; (2)设,求的面积的最大值.
学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱)
(Ⅰ)求在1次游戏中,(i)摸出3个白球的概率;(ii)获奖的概率;
(Ⅱ)求在2次游戏中获奖次数的分布列及数学期望 .
圆C与y轴相切,圆心在射线 x-3y=0(x>0)上,且圆C截直线y=x所得弦长为. (1)求圆C的方程。(2)点P(x,y)是圆C上的动点,求x+y的最大值。(3)求过点M(2,1)的圆的弦的中点轨迹方程。
已知数列的前n项和为,且满足
(1)求数列的通项公式;
(2)若的前n项和为求满足不等式的最小n值.
已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程.