已知A、B、C是直线l上不同的三点,O是l外一点,向量满足:记y=f(x). (1)求函数y=f(x)的解析式:(2)若对任意不等式|a-lnx|-ln[f'(x)-3x]>0恒成立,求实数a的取值范围:(3)若关于x的方程f(x)=2x+b在[0,1]上恰有两个不同的实根,求实数b的取值范围.
已知焦点在轴上的双曲线的两条渐近线过坐标原点,且两条渐近线与以点 为圆心,1为半径的圆相切,又知的一个焦点与关于直线对称.(1)求双曲线的方程;(2)设直线与双曲线的左支交于,两点,另一直线经过 及的中点,求直线在轴上的截距的取值范围.
已知动点与平面上两定点、连线的斜率的积为定值.(1)求动点的轨迹方程;(2)设直线与曲线交于、两点,当||=时,求直线的方程.
若抛物线的顶点在原点,其准线方程过双曲线-=1(,)的一个焦点,如果抛物线与双曲线交于(,),(,-),求两曲线的标准方程.
已知椭圆方程为,、为其左右焦点,点为椭圆上一点,且,.(1)求的面积. (2)直线过点与椭圆交于、两点,若为弦的中点,求的方程.
已知:方程有两个不等的负根;:方程无实根.若或为真,且为假,求的取值范围.